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Abstract-Steady thermocapillary flows at low Prandtl numbers in shallow enclosures under an imposed 
heat flux are studied in the absence of gravitational forces. Scaling analysis is applied to obtain the proper 
parameters and reference quantities that define the problem. The different tIow and thermal regimes are 
identified. The conditions under which a thermal boundary layer appears are defined. The thermal boundary 
layer problem is analyzed; in this case, because of the strong coupling between the flow and temperature 
fields, the driving force changes and so do the reference quantities. The new scaling laws are checked 

against computational results. The new reference quantities are validated. 

1. INTRODUCTION 

THXRMOCAPILLARY flows arise whenever a non-uni- 
form temperature distribution exists along the inter- 
face between two immiscible fluids [l]. These flows are 
important, and sometimes even dominant, in many 
different industrial processes, for example, motion in 
welding pools [Z] and motion in crystal growth melts 
in low-gravity conditions [3]. These two processes 
involve liquids with very small Prandtl numbers. 

Thermocapillary flows have been studied by many 
authors, both theoretically and experimentally; in 
these studies different geometries and heating modes 
are considered. In this paper, the con~guration cor- 
responding to a weld pool is analyzed. Chan et al. [4] 
have studied the flow in a laser melted pool in the case 
of a cylindrical geometry, and Srinivasan and Basu 
[S] in the case of a rectangular geometry. Kou and 
Sun [6] have modeled the Sow in stationary gas tung- 
sten arc (GTA) welds. Chen [7j, in a review article, ad- 
dresses many issues of thermocapillary flows in ma- 
terials processing. Computations of low-Prandtl-number 
thermocapillary flows in shallow enclosures have been 
made by Rivas and Ostrach 181 and experimental 
observations have been made by Camel et al. [9]. 

Scaling analysis has been proven to be an important 
step in understanding complex problems. Often, when 
analyzing thermo-fluid problems, a unit order Prandtl 
number is implicitly assumed and the results are then 
extrapolated to the case of small Prandtl numbers. In 
so doing, erroneous conclusions may be reached. For 
low-Prandtl-near liquids, the ability of the Auid to 
diffuse heat is much greater than its ability to diffuse 

vorticity ; this property makes the behavior of these 
fluids quite distinct. Ostrach [lo] has made a scaling 
analysis of thermocapillary flows ; however, his results 
are, in principle, applicable to flows of liquids of unit 
order Prandtl number. Zebib et al. [ 111 present scaling 
results corresponding to thermocapillary flows in 
differentiaIly-heated square cavities and for a unit 
Prandtl number. In this paper, the scaling in the case 
of low Prandtl numbers is made, the aim being to 
obtain the proper parameters and reference quantities 
in the different regimes that may appear. 

The scaling analysis made here consists of identi- 
fying the appropriate reference variables in a given 
flow region and then non-dimensionalizing the equa- 
tions. The proper parameters are those that appear in 
the dimensionless equations. Following this pro- 
cedure, we have obtained results that, to the best of 
our knowledge, are new : in particular, a new reference 
superficial velocity in the case where a thermal bound- 
ary layer exists. Numerical computations corroborate 
this result [2]. 

In this work, steady thermocapillary flows of low- 
Prandtl-number fluids in shallow rectangular enclos- 
ures under an imposed-heat-flux configuration are 
examined in the absence of gravitational forces. This 
choice of geometry and heating mode renders this 
study closer to the welding problem, in particular, to 
laser welding [12]. In order to simplify the analysis, 
the effects of free surface deformations are neglected. 
In unsteady flows, even small deformations can alter 
the flow pattern notably, e.g. oscillatory thermo- 
capillary flows [13]. Nevertheless, in the case of 
steady fiows, such small deformations have a neg- 
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NOMENCLATURE 

A aspect ratio Y vertical coordinate. 
D height of the cavity 
L length of the cavity Greek symbols 
9 characteristic length of the heat flux thermal diffusivity 

distribution : boundary layer thickness 
Ma Marangoni number 0 dimensionless temperature 

P dimensionless pressure K thermal conductivity 
P pressure fl dynamic viscosity 
PL? Peciet number 11 kinematic viscosity 
Pr Prandtl number P density 

P heat flux distribution ff surface tension 
Re Reynolds number ci,- surface tension temperature coefficient. 

Re, surface tension Reynolds number 
T temperature Subscripts 
AT reference temperature difference 0 reference value 
u dimensionless horizontal velocity c core region 
U horizontal velocity R reference 
U dimensionless vertical velocity S flow boundary layer 
V vertical velocity t thermal boundary layer. 
X dimensionless horizontal coordinate 
x horizontal coordinate Superscript 

Y dimensionless vertical coordinate $ regime III. 

ligible influence on the flow field ; therefore, as a first 
approximation, the free surface can be assumed flat. 

d = a,-0r(T-- T”) 

2. PROBLEM FORMULATION 

where gr, assumed constant, is the surface tension 
temperature coefficient, and crO is the vaiue of the 
surface tension at some reference temperature To. 

Consider a rectangular cavity of length 2L and In the case considered here the thermocapillary flow 
height D, as shown in Fig. 1, filled with a liquid of is induced by an imposed heat flux Q(X) along the 
density p, kinematic viscosity v and thermal diffusivity free surface of the liquid. This function is considered 
(x. These properties are assumed to be constant. The to be symmetrical with respect to the middle of the 
Prandtl number of the fluid is defined as F’r = v/z, enciosure, thereby only half of the domain needs to 
and, in this work, the case Pr cc 1 is considered. be analyzed. 

The free surface is surrounded by a passive gas of 
negligible density, viscosity and thermal conductivity. 
Associated with the free surface there is a surface 
tension which decreases linearly with temperature; 
that is 

Let U and V be the velocity components in the X 
and Y directions (the coordinate axes are shown in 
Fig. l), P the pressure and 2’ the temperature of the 
liquid. The equations of motion (continuity, momen- 
tum and energy) are 

LPLI 
FIG. 1. System coordinates and problem configuration. Only half the enclosure is shown. 
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au av ax+ar=o (14 

The boundary conditions for the velocity field at the 
symmetry line, on the right and bottom walls (no-slip 
condition) and on the free surface (tangential stress 
balance and kinematic condition) are, respectively 

U(0, Y) = ;(o, Y) = 0 

U(L, Y) = V(L, Y) = 0 

U(X,O) = V(X,O) = 0 

(2a) 

(2b) 

(2c) 

V(X, D) = 0 (24 

where equation (2d) represents the driving force for 
the flow. The boundary conditions for the tem- 
perature field at the symmetry line, on the solid walls 
(fixed temperature) and on the free surface (known 
heat flux) are, respectively 

E(O, Y) = 0 

T(L, Y) = T(X,O) = T, 

ar 

(3b) 

Equation (3b) (fixed temperature on the solid walls) 
is the appropriate boundary condition in the case of 
weld pools since the liquid-solid interface is an 
isotherm, namely the melting point. In the previous 
equations, p is the viscosity and K the thermal con- 
ductivity of the fluid. 

Here Q0 is the characteristic value of the heat flux 
distribution (see Fig. 1). All the scaling results will be 
given in terms of AT instead of Q0 ; the relation 
between the two is given by equation (5). 

The Reynolds number for thermocapillary flows is 
defined as 

Since the flow problem is thermally driven, the ref- 
erence quantities for the temperature field must be 
taken into account when determining the reference 
quantities for the velocity field. Moreover, when the 
thermal and flow problems are coupled, all the ref- 
erence quantities depend on each other and, thence, 
they must be considered simultaneously in the analysis. 

U,cY a,ATD 

Rea = v = __ PV 

and the Marangoni number (a Peclet number for 
thermocapillary flows) as 

a,ATD 
Ma= PrRe, =- 

w 
(7) 

Let Y be the characteristic horizontal extent of 
the heat flux distribution, that is, the thermocapillary 

The dimensionless equations corresponding to this 

driving force acts on the free surface over a distance 
regime are given in the Appendix. From equations 

Y. The case D < dp < L is considered in this work 
(Al) it follows that the parameter A2 Re, indicates 

(see Fig. 1). The condition D < 9 assures that the 
the relative importance of inertia and viscous forces, 

fluid is driven over a fairly long distance so that a 
and A’Ma the relative importance of convection and 

distinct surface flow develops, and the condition 
conduction. In this regime the case A2 Re, 6 1 is con- 

9 < L assures that the vertical wall is sufficiently far 
sidered; thus, since Pr -K 1, one has A2 Ma c-c 1, that 
is, convection is negligible. 

removed so that its presence does not affect the surface 
flow; thereby one need not consider vertical wall 
effects when analyzing the surface flow. In what 
follows, 9 is considered to be the characteristic length 
in the X direction and, hence, the aspect ratio is 
defined as A = D/9 and the condition A < 1 holds. 

In the following sections the different regimes that 
appear in the problem are analyzed, and the appro- 
priate reference quantities are obtained. 

3. SMALL REYNOLDS NUMBERS (REGIME I) 

The case of flows at small Reynolds numbers (say, 
of unit order and less) is considered first. Viscous 
forces (and conduction, since Pr << 1) are important 
all over the enclosure. Thus, the depth of the enclos- 
ure, D, is the appropriate characteristic length in the 
Y direction. A viscous-type formulation, where the 
pressure and viscous terms are of the same order of 
magnitude, is considered. The following reference 
quantities are used to non-dimensionalize the prob- 
lem: 9, D, UR, VR, PR and AT. The reference 
pressure, P, = pU,_Y/D’, is obtained from the bal- 
ance of pressure and viscous terms and the reference 
velocity in the Y direction, V, = U,D/Y, from con- 
tinuity. The reference velocity in the X direction is 
obtained from the thermocapillary boundary con- 
dition (2d) as shown by Ostrach [lo] 

o,ATA 
u, = ~ 

p . 
(4) 

The reference temperature difference AT is obtained 
from equation (3c) 

AT=@. 
K 
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4. LARGE REYNOLDS NUMBERS (REGIME II) 

Now the case of high Reynolds numbers is 
analyzed. Inertia dominates over viscous forces in this 
case; hence, an inertia-type formulation, where the 
pressure and inertia terms are of the same order of 
magnitude, is considered. Under the condition 
A2 Re, >> 1, the viscous terms would be negligible: 
hence since ,u~?‘U/i( Y2 represents the mechanism for 
transmitting the driving force to the bulk of the fluid, 

there must exist a thin layer near the free surface where 
that term is not negligible. The existence of this surface 
boundary layer in the case of low Prandtl numbers is 
shown in Rivas [14]. 

At low Prandtl numbers, conduction effects being 
strong, one may have a flow boundary layer and not 
have a thermal boundary layer in some range of large 
Reynolds numbers. This is the situation considered in 
this regime. Thus, AT, as given by equation (5). still 

applies since convection is not dominant. 

4.1. Boundary layer 

The following reference quantities are used to non- 
dimensionalize the boundary layer problem: Y. (5,. 
U,. V,, P, and AT, where 6, is the characteristic dimen- 
sion of the layer in the Y direction. The reference 

pressure, P, = pU”, is obtained from the balance of 
pressure and inertia terms and the reference velocity 
in the Y direction. V, = U,6,/9, from continuity. AT 
is the appropriate reference here, as it follows from 
the thermocapillary boundary condition (2d). The ref- 
erence velocity in the Xdirection, C:, and the reference 
boundary layer thickness, 6,, are determined from the 
thermocapillary boundary condition (2d), and from 
the balance of inertia and shear stress in the momen- 
tum equation in the X direction (I b), one obtains 

as shown by Ostrach [lo]. The corresponding Reyn- 
olds number for the boundary layer is defined as 
Re, = U,_Y/v, and one has 

A' Re, = (A’ Re,)” >> 1. (10) 

The dimensionless equations corresponding to the 
flow boundary layer are given in the Appendix. From 
equation (A2d), one has that the parameter that deter- 
mines the relative importance of convection and con- 
duction (the effective Peclet number) is the Prandtl 
number. Since Pr c 1, convection is negligible inside 
the flow boundary layer; the temperature distribution 
will then be determined by conduction only. 

4.2. Core region 
In this region, D is considered to be the charac- 

teristic dimension in the Y direction. The following 
reference quantities are used to non-dimensionalize 

the problem: 99, D, U,, b,, P, and AT, where P, =- 

pi/t and VC = U,D/-U. In order to determine the 
reference velocity in the X direction, (f,. an extra 
condition is required, which must come from the 
matching between the core and the boundary layer. 
Since the vertical velocity in both the boundary 1ayc1 
and the core is of the same order of magnitude in 
the matching region, WC specify 

Notice that, from equation (11). one also has 

U,D = L’,S,; (12) 

that is, the volume flux in both the boundary layci 
and the core are of the same order of magnitude. The 

corresponding Reynolds number for the core flow is 
defined as Re, = U,Y/v, and the corresponding Peclet 
number is defined as Pe, = Pr Re, = c’, Y/‘,lol. The 
dimensionless equations corresponding to this region 
are given in the Appendix. From equations (A3) it 
follows that the parameter 

(13) 

indicates the relative importance of inertia and viscous 
forces; hence, the viscous terms in the momentum 
equations are negligible and the parameter 

A’ Pe, = Pr’ ‘(A2 Mu)’ ‘. (14) 

which is a modified Marangoni number, indicates the 
relative importance of convection and conduction in 
the core flow. Hence, convection will be negligible if 
A’Pe,cc I. 

The scaling analysis of this regime shows that 

A’ Ma is not the proper parameter for determining 
the relative importance of convection and conduction 
in the case of low Prandtl numbers: instead, two 
different parameters apply. namely 

Pr, in the flow boundary layer 

Pr’ ‘(A’ Ma) ’ ‘, in the core region. 

Since convection is negligible in the fow boundary 
layer, the temperature distribution is not affected by 
the boundary layer flow. On the contrary, it is the 
core flow which can affect, if Pr’ ‘(A’ Ma)’ ’ > 1. 
the temperature field and, in particular, the surface 
temperature distribution. 

Under the condition Pr”‘(A’ Ma)“3 >> I. con- 
vection will be dominant and the previous scaling will 
no longer be valid. This case is analyzed in the next 

section. 
Remark. Notice that li, is the proper reference vel- 

ocity to estimate convective effects in the core region. 
ln some papers, other authors use U, and obtain a 
different parameter, namely Pr”“(A’ Ma)2’3. which 
overestimates the strength of convection in this case 

of flows at low Prandtl numbers. 
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5. LARGE MODIFIED MARANGONI NUMBERS 

(REGIME Ill) 

The case where the Marangoni number is very large, 
so that Pr2/3(A2 Mu) ‘/3 >> 1, is considered now. This 
means that convection dominates the heat transfer 
process over most of the enclosure, whereas it is neg- 
ligible close to the free surface, as discussed in Section 
4. There must exist, then, a thin region (near the free 
surface) where both conduction and convection are 
important, that is, a thermal boundary layer. The 
thickness of this thermal boundary layer will be small 
as compared to the depth of the enclosure, D, and, on 
the other hand, since Pr << 1, large as compared to 
the thickness of the flow boundary layer. Thus, three 
different regions can be differentiated. 

In this case, due to strong convective effects, the 
driving force and the scaling of the flow field are 
expected to change. The temperature difference, AT, 
as given by equation (5) was the appropriate reference 
value when conduction was important all over the 

enclosure (this was the case considered in regimes I 
and II). Now that the heat transfer process is domi- 
nated by convection, a new reference value has to be 
determined. Let AT* be the reference temperature 
difference sought, and 6, the thickness of the thermal 
boundary layer, over which conduction and con- 
vection are important. From equation (3~) one has 

AT*=!&!! 
K 

(15) 

where 6, is as yet unknown and depends on the flow 
field. The relation between the two reference tem- 
perature differences is 

AT* = %AT 

where here AT represents the reference temperature 
difference that one would obtain if in this case the 
temperature distribution were determined by con- 
duction. Both temperature distributions in the Y 
direction are sketched in Fig. 2 for comparison. The 
surface temperature is smaller than it would be if the 
heat transfer process were dominated by conduction, 
as given by equation (16). The slope at the free surface 
is the same in both cases as given by the thermal 
boundary condition (3~). 

5.1. Flow boundary layer 
An analysis similar to that made in Section 4 is 

carried out here for the flow boundary layer. The 
following reference quantities are used to non-dimen- 
sionalize the problem: 8, S,*, U,*, V$ P,*, and AT*, 
where P,* = PCJ:~ and lf$ = U,*s,*2’. Here AT* is the 
appropriate reference, as it follows from the ther- 
mocapillary boundary condition (2d) ; from this equa- 
tion one has 

(17) 

FIG. 2. Sketch of temperature distributions 
duction and convection regimes. 

for the con- 

and from the momentum equation in the X direction 
(1 b), after balancing inertia and shear stress 

In order to determine U,*, b$and 6,, one more relation 
is required which must come from the analysis of the 
thermal boundary layer. 

5.2. Thermal boundary layer 
Now, 6, is the characteristic length in the Y direc- 

tion. As was mentioned before, since Iow-Prandtl- 

number flows are being considered, the thermal 
boundary layer is expected to be much thicker than 
the velocity boundary layer, 6, >> S:, and thus, the 
thermal boundary layer is part of the ‘core region’ 
for the flow boundary layer. The following reference 
quantities are used to non-dimensionalize the prob- 

lem: $P, a,, UE VE Ptand AT*, where P$= pUy, 
and V$= UfY5,jY. The reference velocity U,* is given 

by 

UT= u$ (19) 
t 

after letting V: = V,*, analogously to equation (11). 
The condition that convection and conduction be 

of the same order of magnitude over S,, which defines 
the thermal boundary layer, reads 

From equations (15) and (17)-(20), the expressions 
for U,*, S,* and S, are determined. The new reference 
quantities are 

(21) 



(22) 

The relationship between ii*and ii, is then 

(S? 

ii, 
= Pr K I. (14) 

The corresponding Reynolds number for the flow 
boundary layer is defined as Rr,*= L’TZ/I’. and one 
has 

The dimensionless equations for the flow and thermal 
boundary layers are given in the Appendix. From 
equation (A4d), one has that the parameter that dcter- 
mines the relative importance of convection and con- 
duction in the flow boundary layer (the effective Peclet 
number) is the Prandtl number. Since Pr CC 1. con- 
vection is negligible inside the flow boundary layer; 
the temperature distribution will then be determined 
by conduction only. This is the same result obtained 
in regime II. Also. from equations (A5b) and (.45c), 
one has that the viscous terms in the momentum 
equations in the thermal boundary layer are negligible. 
The corresponding Reynolds number is defined as 
Re*= IJ*L?‘~v and one has t 1,. 

A’ Rr:= Pr’ ‘(A’ Re,)’ ’ >> I. (26) 

This region is now the region outside the thermal 
boundary layer. 1) is considered to be the charac- 
teristic length in the Y direction. Since the temperature 
difference across the thermal boundary layer is AT*. 
the thermal core is essentially isothermal [7]. Thus. 
only the flow equations arc non-dimensionalized here. 
The following reference quantities arc used : 9. D, 
c’,* V,* and PX where P,* = pc’,*’ and if,* = C!,*n:‘.Y’. 

The reference velocity C’: is given by 

after letting Vf = V,*, analogously to equation (I I ). 
The corresponding Reynolds number for the ther- 

mal core flow is defined as Rc: = U,*Y’/v. The dimen- 
sionless equations arc given in the Appendix (Ah). It 
follows that the parameter 

(28) 

indicates the relative importance of inertia and viscous 
forces in this thermal core region; thus, the viscous 
terms arc negligible. 

U T 

I-‘IG. 3. Sketch of velocity and temperature distributions fol 
the thermal boundary layer regime. 

A sketch of the configuration in this regime (flab 
and thermal boundary layer) is shown in Fig. 3. 

Remark. Previous results (equation (21)) show that 
the reference velocity in the surface layer in this 
regime. C.:,*, is independent of r. From the thermo- 

capillary boundary condition (2d) one has equation 
(I 7), where the quotient AT*/y gives a measure of 
the driving force. From equations (IS) and (23) one 
has. all other paramctcrs being fixed 

A7‘* I 

Y - I/” ‘5 

that is, as Y decreases (or as the heat flux distribution 
gets narrower). the driving force increases. and so 
does the ratio U~/C?: (equation (17)). However, Cr,* is 
independent of Y ; thus, the increase in driving force 
results in a decrease in the reference layer thickness 
(indeed. from equation (22), (j,* - y’ ‘1. The practical 
implication is that by narrowing the heat flux dis- 
tribution, even though the driving force increases, 
once regime III is attained, the order of magnitude of 
the fluid velocity remains unchanged and, hence. the 
surface velocity is not expected to change much (recall 
that now the intensity of the heat flux distribution. 

Q,), is not changed). 

6. RESULTS 

Three different flow regimes have been obtained. 

namely 

1. Viscous regime 

A ’ Re, 6 1. 
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Table 1. Summary of scaling results ; flow characteristics 
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Pr << 1 

A2Re,< 1 A2Re,x 1 
_ 

A2Mac 1 A*Ma- 1 A2Mas 1 

Pr”‘(A* Ma)“’ << 1 Pr2:3(AZ Mu)“~ N 1 Przs3(A2 Ma)‘.j >> 1 

Viscous forces Velocity boundary layer 
important inertia and viscous forces important 

convection negligible 
A2Re,cc 1 
inertia negligible 

A2Re,- 1 
inertia important 

Core region 
inertia dominant 

Convection Convection 
negligible negligible 

Convection and 
conduction 
important 

Thermal boundary 
layer 

-inertia dominant 
convection and 
conduction 
important 

Thermal core region 
inertia dominant 
isothermal 

II. Flow boundary layer regime (no thermal boundary 
layer) 

A2 Re, >> 1 and Pr2/3(A2 Ma)‘13 6 1. 

III. Flow and thermal boundary layer regime 

A2 Re, >> 1 and Pr2’3(A2 Mu)“~ >I 1. 

These three flow regimes correspond to two thermal 
regimes : 

(i) conduction regime (flow regimes I and II) ; 
(ii) convection regime (flow regime III). 

The scaling results of these regimes are summarized 
in Tables 1 and 2. 

Now the behavior of the maximum velocity and 

maximum temperature of the fluid is estimated by 
using the scaling results. This is one of the goals of 
this type of analysis. As the maximum velocity and 
maximum temperature of the fluid occur on the free 
surface, the reference velocity in the surface region and 
the reference temperature difference (which applies 
along the free surface) are considered as estimates for 
KY,,,,, and T,,, - TO respectively. 

Since A2 Re, - Qo, all other parameters being 

equal (see equations (5) and (6)), the dependence of 
U,,, and T,,, with the intensity of the heat flux dis- 
tribution, Qo, will be given in dimensionless form by 
the dependence with A’ Re,. For the velocity field 

Table 2. Summary of scaling results ; reference quantities 

Pr << 1 

A’Re,s 1 A2Re,x 1 
- 

A’Ma<c 1 A’Ma- 1 A’Ma>> 1 
____~ 

Pr2”(A2 Ma) 1’3 cc 1 Pr2!3 (A2 Ma) “3 - 1 Pr2’3(Az Ma)‘:’ x 1 
____ 

*&!? A&!?! AT*=%3 
K K K 

(r,ATA u, = ~ 
P 

5 = (A* Re,)-“’ << 1 3_ pr1:4 

D - (A2 Re,) Iv4 
<< 1 

4 1 

D Pr’!‘(A2 Ma) “‘I 
c 1 

u: = u$ 
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f~iti. 4. Scaling laws for the surface velocity lield. 

one has the following expressions for the difTerent 
regimes : 

Regime I (equation (6)) 

log A’ 
c&Y 

--- = log A’ Re, 
1’ 

(W 

Regime II (equation ( IO)) 

log A 2 :;-T = 

Regime III (equation (25)) 

;log A” Re, (30) 

These laws are plotted in Fig. 4: curves I--Ill cor- 

respond to equations (29)-(31) respectively. In regime 
III the scaling law depends upon the Prandti number : 
the smaller Pr, the larger the values of A2 Rr, for 

which this thermal boundary layer regime is attained. 
The symbols in the figure correspond to experimental 
and computational results (see Table 3) ; in each case 
the maximum velocity is represented. 

For very small Reynolds numbers (limit A’ Re, + 0) 

the exact solution is known [15, 161, and the surface 

velocity is 

U(0) = :ci, 

whereby one has 

This equation, curve (a) in Fig. 4, is a line parallel to 
curve I (equation (29)). 

The information given by the scaling diagram is 
two-fold. On the one hand, one has the slope of the 
different curves: the data points must lie on lines 
parallel to these curves (see curve (a)). On the other 
hand, the scaling laws give the order of magnitude of 
the variable represented : since the scale in the diagram 
is logarithmic, one expects the data points to fall either 
above or betow but close to the appropriate curve. 
I&XX, one can imagine a band encompassing the 
curves where the data points should lie, as can be seen 
in Fig. 4. Thus, the estimated results, given by curves 
I-III, agree quite well with the available experimental 
and computational results. In particular, the solid 
squares, which represent two numerical values cor- 
responding to regime III, validate the new reference 
surface velocity, U?: obtained in this paper. 

For the temperature held one has 

Table 3. Data used to check the scaling laws in Figs. il and 5 

Reference Liquid Heating mode Results 

n Oreper et ul. [2] IV = 0.1 I Gaussian heat flux Computation 
0 Chan e/ ~1. [4] P,_ = 0. I Rectangular heat Rux Computation 
+ Ghan er al. [4] f+ = 0.02 Rectangular heat Rux Computation 
n Kou and Sun [6] Pr = 0.01 Gaussian heat flux Computation 
l Rivas and Ostrach [S] Pr = 0 Gaussian heat flux Computation 
0 Camel el czl. [9] Tin Differential heating Experiment 
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IogA’Rc, 

FIG. 5. Scaling laws for the surface temperature field. 

Regime i (equation (6)) 

ATaTD 
log /I- 

P” 
=logA’Re, (33) 

Regime ii (equations (5), (6), (15) and (23)) 

AT%,D 
logA2p= 

P’ 
2 log A2 Re, - 2 log Pr. (34) 

These laws are plotted in Fig. 5: curves (i) and (ii) 
correspond to equations (33) and (34) respectively. 

Thus, Figs. 4 and 5 show that U,,, and T,,,,, are 
expected to increase as Q0 increases, although at a 
smaller rate when convection effects become 
important. 

7. CONCLUSIONS 

Scaling analysis has been applied to study steady 
thermocapillary flows of low-Prandtl-number fluids 
in shallow rectangular enclosures under an imposed- 
heat-flux configuration. The different regimes that 
appear in the thermo-fluid problem have been identi- 
fied and the proper parameters and reference quan- 
tities that define them obtained. The scaling has been 
made for the entire range of parameters. The proper 
parameters for determining the relative importance of 
convection and conduction at low Prandtl numbers 
have been determined. The existence of a thermal 
boundary layer is restricted to the case of high modi- 
fied Marangoni numbers, Pr213(A2 Ma) ‘I3 >> 1. In this 
case, since convection dominates the heat transfer 
process, the coupling between the flow and the tem- 
perature field is very strong, and as a consequence, 
the driving force changes and so do the reference 
quantities. The scaling analysis of this case has been 

made and the new reference quantities have been 

obtained. 
The conditions under which Ostrach’s scaling 

applies in the case of flows at low Prandtl numbers 
under an imposed-heat-flux configuration can now be 
precisely stated. They are 

A2 Re, >> 1 and Pr2i3(A2 Mu)“~ 6 1 ; 

one also has that under these conditions a thermal 
boundary layer will not occur. On the other hand, if 

A2 Re, >> 1 and Pr2/3(A2 Mu)‘13 >> 1 

a thermal boundary layer will occur and the new 
scaling obtained here applies. 

The important role played by the core flow has 
been shown : since convection is negligible in the flow 
boundary layer, the core flow is responsible for the 
coupling between the velocity and temperature fields. 
In short, convective changes in driving force are 
caused by the core flow. (In the case Pr 2 1, con- 
vection is important in the flow boundary layer, so 
the coupling is then through the surface layer flow.) 

The reference quantities that apply along the free 
surface have been qualitatively identified with the 
maximum velocity and maximum temperature of the 
fluid, so that these maximum values can be estimated. 
The agreement between the estimated results, given 
by the scaling laws, and available experimental and 
computational results is quite good. The new scaling 
is thus validated. 

In this scaling analysis, the implicit assumption that 
the thermocapillary force is important has been con- 
sidered, or in other words, that the flow is driven by 
thermocapillary effects. Therefore, the extent of the 
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region where the thermocapillary driving Cool-cc is 
important. 9. deiines the region of applicability of 
the scaling results. Beyond this region the ff ow may 
stiII bc strong, driven by inertia : however. the (thcrmo- 
capillary) scaling results do not apply there. 
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APPENDIX 

Three different how regimes have been obtained. ‘The 
equations of motion corresponding to each regime are gtven 
here. 

Rqimc I 
Viscous regime : 
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ae ae AZ a*0 a20 

‘% +“& = Pr(A* Mu)‘/~ ax2 -+ay’ (A54 

and for the thermal core region they are 

!!f+$ 
ay 

au au 1 ap 
u~+u,=,jj 
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Notice that the dimensionless variables for the various 
regions and regimes are different, even though the same 
symbols are used. 

ANALYSE D’ECHELLE DES ECOULEMENTS THERMOCAPILLAIRES A FAIBLE 
NOMBRE DE PRANDTL 

R&sum&On itudie les tcoulements permanents thermocapillaires aux faibles nombres de Prandtl dans 
des cavites ttroites soumises a un flux de chaleur en l’absence de forces gravitationnelles. L’analyse d’tchelle 
est appliquee pour obtenir les parametres et les grandeurs de reference qui definissent 16 probleme. Les 
differents Bcoulements et regimes thermiques sont identifies. Les conditions sous lesquelles apparait une 
couche limite thermique sont definies. On analyse le problemme de couche limite thermique ; dans ce cas, a 
cause du fort couplage entre l’boulement et les champs de temperature, la force motrice change et aussi 
les quantites de reference. Les nouvelles lois d’tchelle sont test&es avec des rtsultats numiriques. Les 

nouvelles grandeurs de reference sont valid&es. 

SKALIERUNG BE1 THERMOKAPILLAREN STRijMUNGEN MIT KLEINER PRANDTL- 
ZAHL 

Zusammenfassung-Die stationare thermokapillare Stromung bei kleiner Prandtl-Zahl in flachen HohlrHu- 
men wird fur aufgepragte Warmestromdichte in Schwerelosigkeit untersucht. Unter Anwendung der 
Dimensionsanalyse ergeben sich geeignete Parameter und Bezugsgriigen fur die Beschreibung des Problems. 
Die unterschiedlichen Bereiche von Strdmung und Warmetransport werden identifiziert. Es werden die 
Bedingungen definiert, unter welchen eine thermische Grenzschicht auftritt. Das Problem der thermischen 
Grenzschicht wird gel&t. In diesem Fall lndern sich die antreibende Kraft und die Bezugsgroben wegen der 
starken Kopplung zwischen den Geschwindigkeits- und Temperaturfeldern. Die neuen Skalierungsgesetze 

werden mit Rechenergebnissen verglichen, die neuen Bezugsgrogen werden validiert. 

OIIPEJJEJIEHHE MACIIITAPA TEPMOKAIIkIJI~5IPHbIX TE4EHHR C HM3KMIIH 
rB,B2IAMM HPAHATJDI 

AlolOTaWuI-tkCnenyIoTca crauuoeapabre TepMoKanunnrpHbIe re~emin C HH3KBMU YUCnaMH HpHanTJtR 
B rrerny6oxux nOJtOCTIlX C 3aAaHHbIM TelTJrOBbIM nOTOKOM npn OTCyTCTBmi rpaB&iTamiOHHblX CHJt. &tR 
pacqe-ra onpenenrmnmx napaMerpoe xaparrreprrbtx aenmrnn 3anaqu ncnonbsye-rcrr ana_nrr3 nono6rm. 
BL.mBnnioTcr pa3nmirrbre pencitabtbr reqemirr H rennoribie pexw~bt. Onpenenniorcr ycnomrn Bo3mrxHorie- 
HUH Tennonoro norpaktnrnoro cno5r. AHanH3HpyeTcX 3ana9a 0 TennoBotd norpamirHoru cnoe; B pacc- 
MaTpHBaeMOM CJIyVae U3-3a CUJtbHOii B3aUMOCX3H MelKAy nOJtllMB TeVeHWIi H TeMIIepaTyp JlBtiEyluaK 

CHJIa B XapaKTepHble BeJIWiHHbl A3MeHRH)TCK. nPWMeHRMOCTb IlOJIj’qeHHblX 3aKOHOB nono6m npOBep- 
IleTCIl BCXOnK 83 pe3ynbTaTOB paCWTOB. ~OATBepW,aCTCR llpaBHJIbHOCTb Bbl6Opa XapaKTepHblX 

3HareHdi. 


