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Abstract—Steady thermocapillary flows at low Prandtl numbers in shallow enclosures under an imposed

heat flux are studied in the absence of gravitational forces. Scaling analysis is applied to obtain the proper

parameters and reference quantities that define the problem. The different flow and thermal regimes are

identified. The conditions under which a thermal boundary layer appears are defined. The thermal boundary

layer problem is analyzed ; in this case, because of the strong coupling between the flow and temperature

fields, the driving force changes and so do the reference quantities. The new scaling laws are checked
against computational results. The new reference quantities are validated.

1. INTRODUCTION

THERMOCAPILLARY flows arise whenever a non-uni-
form temperature distribution exists along the inter-
face between two immiscible fluids [1]. These flows are
important, and sometimes even dominant, in many
different industrial processes, for example, motion in
welding pools [2] and motion in crystal growth melts
in low-gravity conditions [3]. These two processes
involve liquids with very small Prandtl numbers.
Thermocapillary flows have been studied by many
authors, both theoretically and experimentally; in
these studies different geometries and heating modes
are considered. In this paper, the configuration cor-
responding to a weld pool is analyzed. Chan ef al. [4]
have studied the flow in a laser melted pool in the case
of a cylindrical geometry, and Srinivasan and Basu
[5] in the case of a rectangular geometry. Kou and
Sun [6] have modeled the flow in stationary gas tung-
sten arc (GTA) welds. Chen [7], in a review article, ad-
dresses many issues of thermocapillary flows in ma-
terials processing. Computations of low-Prandtl-number
thermocapillary flows in shallow enclosures have been
made by Rivas and Ostrach [8] and experimental
observations have been made by Camel e al. [9].
Scaling analysis has been proven to be an important
step in understanding complex problems. Often, when
analyzing thermo-fluid problems, a unit order Prandtl
number is implicitly assumed and the results are then
extrapolated to the case of small Prandtl numbers. In
so doing, erroneous conclusions may be reached. For
low-Prandtl-number liquids, the ability of the fluid to
diffuse heat is much greater than its ability to diffuse

vorticity ; this property makes the behavior of these
fluids quite distinct. Ostrach [10] has made a scaling
analysis of thermocapillary flows ; however, his results
are, in principle, applicable to flows of liquids of unit
order Prandtl number. Zebib et al. [11] present scaling
results corresponding to thermocapillary flows in
differentially-heated square cavities and for a unit
Prandtl number. In this paper, the scaling in the case
of low Prandti numbers is made, the aim being to
obtain the proper parameters and reference quantities
in the different regimes that may appear.

The scaling analysis made here consists of identi-
fying the appropriate reference variables in a given
flow region and then non-dimensionalizing the equa-
tions. The proper parameters are those that appear in
the dimensionless equations. Following this pro-
cedure, we have obtained results that, to the best of
our knowledge, are new : in particular, a new reference

 superficial velocity in the case where a thermal bound-

ary layer exists. Numerical computations corroborate
this result [2].

In this work, steady thermocapillary flows of low-
Prandtl-number fluids in shallow rectangular enclos-
ures under an imposed-heat-flux configuration are
examined in the absence of gravitational forces. This
choice of geometry and heating mode renders this
study closer to the welding problem, in particular, to
laser welding [12]. In order to simplify the analysis,
the effects of free surface deformations are neglected.
In unsteady flows, even small deformations can alter
the flow pattern notably, e.g. oscillatory thermo-
capillary flows [13]. Nevertheless, in the case of
steady flows, such small deformations have a neg-
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NOMENCLATURE
A aspect ratio Y vertical coordinate.
D height of the cavity
L length of the cavity Greek symbols
z characteristic length of the heat flux o thermal diffusivity
distribution o boundary layer thickness
Ma  Marangoni number 0 dimensionless temperature
D dimensionless pressure K thermal conductivity
P pressure 7 dynamic viscosity
Pe Peclet number v kinematic viscosity
Pr Prandtl number o density
O heat flux distribution o surface tension
Re Reynolds number or surface tension temperature coefficient.
Re,  surface tension Reynolds number
T temperature Subscripts
AT  reference temperature difference 0 reference value
u dimensionless horizontal velocity c core region
U horizontal velocity R reference
v dimensionless vertical velocity s flow boundary layer
14 vertical velocity t thermal boundary layer.
X dimensionless horizontal coordinate
X horizontal coordinate Superscript
¥ dimensionless vertical coordinate * regime 111

ligible influence on the flow field ; therefore, as a first
approximation, the free surface can be assumed flat,

2. PROBLEM FORMULATION

Consider a rectangular cavity of length 2L and
height D, as shown in Fig. 1, filled with a liquid of
density p, kinematic viscosity v and thermal diffusivity
. These properties are assumed to be constant. The
Prandtl number of the fluid is defined as Pr = v/a,
and, in this work, the case Pr « 1 is considered.

The free surface is surrounded by a passive gas of
negligible density, viscosity and thermal conductivity.
Associated with the free surface there is a surface
tension which decreases linearly with temperature;
that is

Q{X)

og=g4—0(T—T,)

where o, assumed constant, is the surface tension
temperature coefficient, and o, is the value of the
surface tension at some reference temperature 7.

In the case considered here the thermocapillary flow
is induced by an imposed heat flux Q(X) along the
free surface of the liquid. This function is considered
to be symmetrical with respect to the middie of the
enclosure, thereby only half of the domain needs to
be analyzed.

Let U and ¥ be the velocity components in the X
and Y directions (the coordinate axes are shown in
Fig. 1), P the pressure and T the temperature of the
liquid. The equations of motion (continuity, momen-
tum and energy) are

L

F1G. 1. System coordinates and problem configuration. Only half the enclosure is shown.
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The boundary conditions for the velocity field at the
symmetry line, on the right and bottom walls (no-slip
condition) and on the free surface (tangential stress
balance and kinematic condition) are, respectively

U@, Y) = Z—;(o, Y)=0 (2a)
UL Y) = V(L,Y) =0 (2b)
U(X,0) = V(X,0) = 0 20)
Ky D)= —or L (,D)  (d)
V(X,D) =0 (2e)

where equation (2d) represents the driving force for
the flow. The boundary conditions for the tem-
perature field at the symmetry line, on the solid walls
(fixed temperature) and on the free surface (known
heat flux) are, respectively

oT
6—X(0’ Y)=0 (3a)
T(L,Y)=TX,0)=T, (3b)
«IT(X.D) = 0. (30)

Equation (3b) (fixed temperature on the solid walls)
is the appropriate boundary condition in the case of
weld pools since the liquid-solid interface is an
isotherm, namely the melting point. In the previous
equations, y is the viscosity and « the thermal con-
ductivity of the fluid.

Since the flow problem is thermally driven, the ref-
erence quantities for the temperature field must be
taken into account when determining the reference
quantities for the velocity field. Moreover, when the
thermal and flow problems are coupled, all the ref-
erence quantities depend on each other and, thence,
they must be considered simultaneously in the analysis.

Let # be the characteristic horizontal extent of
the heat flux distribution, that is, the thermocapillary
driving force acts on the free surface over a distance
&Z. The case D < ¥ < L is considered in this work
(see Fig. 1). The condition D < % assures that the
fiuid is driven over a fairly long distance so that a
distinct surface flow develops, and the condition
& < L assures that the vertical wall is sufficiently far
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removed so that its presence does not affect the surface
flow; thereby one need not consider vertical wall
effects when analyzing the surface flow. In what
follows, . is considered to be the characteristic length
in the X direction and, hence, the aspect ratio is
defined as 4 = D/.% and the condition 4 < 1 holds.

In the following sections the different regimes that
appear in the problem are analyzed, and the appro-
priate reference quantities are obtained.

3. SMALL REYNOLDS NUMBERS (REGIME 1)

The case of flows at small Reynolds numbers (say,
of unit order and less) is considered first. Viscous
forces (and conduction, since Pr « 1) are important
all over the enclosure. Thus, the depth of the enclos-
ure, D, is the appropriate characteristic length in the
Y direction. A viscous-type formulation, where the
pressure and viscous terms are of the same order of
magnitude, is considered. The following reference
quantities are used to non-dimensionalize the prob-
lem: &, D, Uy, Vg, Px and AT. The reference
pressure, Py = uUr#/D?, is obtained from the bal-
ance of pressure and viscous terms and the reference
velocity in the Y direction, Vi = UgD/%, from con-
tinuity. The reference velocity in the X direction is
obtained from the thermocapillary boundary con-
dition (2d) as shown by Ostrach [10]

_67AT4
T

Ur @
The reference temperature difference AT is obtained
from equation (3c)

Q,D
T="—.
AT =% ©)
Here O, is the characteristic value of the heat flux
distribution (see Fig. 1). All the scaling results will be
given in terms of AT instead of Q,; the relation
between the two is given by equation (5).
The Reynolds number for thermocapillary flows is
defined as
U & _ 6ATD

Re, = ———
v uy

©®

and the Marangoni number (a Peclet number for
thermocapillary flows) as

ATD
Ma = PrRe, = L.

Q)

The dimensionless equations corresponding to this
regime are given in the Appendix. From equations
(A1) it follows that the parameter 42 Re, indicates
the relative importance of inertia and viscous forces,
and A2Ma the relative importance of convection and
conduction. In this regime the case 42 Re, < 1 is con-
sidered ; thus, since Pr « 1, one has 4> Ma « 1, that
is, convection is negligible.
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4. LARGE REYNOLDS NUMBERS (REGIME Il)

Now the case of high Reynolds numbers is
analyzed. Inertia dominates over viscous forces in this
case; hence, an inertia-type formulation, where the
pressure and inertia terms are of the same order of
magnitude, is considered. Under the condition
A? Re, > 1, the viscous terms would be negligible ;
hence, since ud?U/3Y? represents the mechanism for
transmitting the driving force to the bulk of the fluid,
there must exist a thin layer near the free surface where
that term is not negligible. The existence of this surface
boundary layer in the case of low Prandtl numbers is
shown in Rivas [14].

At low Prandtl numbers, conduction effects being
strong, one may have a flow boundary layer and not
have a thermal boundary layer in some range of large
Reynolds numbers. This is the situation considered in
this regime. Thus, AT, as given by equation (5), still
applies since convection is not dominant.

4.1. Boundary layer

The following reference quantities are used to non-
dimensionalize the boundary layer problem: &. é,.
U,, V,, P,and AT, where J, is the characteristic dimen-
sion of the layer in the Y direction. The reference
pressure, P, = pUZ, is obtained from the balance of
pressure and inertia terms and the reference velocity
in the Y direction, V, = U,/.Z, from continuity. AT
is the appropriate reference here, as it follows from
the thermocapillary boundary condition (2d). The ref-
erence velocity in the X direction, U, and the reference
boundary layer thickness, J,, are determined from the
thermocapillary boundary condition (2d), and from
the balance of inertia and shear stress in the momen-
tum equation in the X direction (1b), one obtains

o [oRATYY
U, = A (8)

J,
Bz(AzRe(,) "l )

as shown by Ostrach [10]. The corresponding Reyn-
olds number for the boundary layer is defined as
Re, = U,.¥ /v, and one has

A% Re, = (A% Re,)** » 1. (10)

The dimensionless equations corresponding to the
flow boundary layer are given in the Appendix. From
equation (A2d), one has that the parameter that deter-
mines the relative importance of convection and con-
duction (the effective Peclet number) is the Prandtl
number. Since Pr « 1, convection is negligible inside
the flow boundary layer ; the temperature distribution
will then be determined by conduction only.

4.2. Core region

In this region, D is considered to be the charac-
teristic dimension in the Y direction. The following
reference quantities are used to non-dimensionalize
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the problem: &, D, U., V., P.and AT, where P, =
pUZ and V.= UD/%. In order to determine the
reference velocity in the X direction, {/., an cxtra
condition is required, which must come from the
matching between the core and the boundary layer.
Since the vertical velocity in both the boundary layer
and the core is of the same order of magnitude in
the matching region, we specify

Vo=V, {1

Notice that, from equation (11). one also has

UD=Ug,; (12)
that 1s, the volume flux in both the boundary layer
and the core are of the same order of magnitude. The
corresponding Reynolds number for the core flow is
defined as Re. = U.% /v, and the corresponding Peclet
number is defined as Pe, = Pr Re, = U, ¥ jo. The
dimensionless equations corresponding to this region
are given in the Appendix. From equations (A3) it
follows that the parameter

A Re, = (A° Re,)' 7 > 1 (13
indicates the relative importance of inertia and viscous
forces; hence, the viscous terms in the momentum
equations are negligible and the parameter

A? Pe, = Pri’(A° M), (i4)
which is a modified Marangoni number, indicates the
relative importance of convection and conduction in
the core flow. Hence, convection will be negligible if
A7 Pe, < |

The scaling analysis of this regime shows that

A? Ma is not the proper parameter for determining
the relative importance of convection and conduction
in the case of low Prandtl numbers; instead, two
different parameters apply. namely

Pr, in the flow boundary layer
Pr¥3(A4% Ma)'’, in the core region.

Since convection is negligible in the flow boundary
layer, the temperature distribution is not affected by
the boundary layer flow. On the contrary, it is the
core flow which can affect, if Pr¥* (4> Ma)'* > i,
the temperature field and, in particular, the surface
temperature distribution.

Under the condition Pri?(4% Ma)"? > 1. con-
vection will be dominant and the previous scaling will
no longer be valid. This case is analyzed in the next
section.

Remark. Notice that U, is the proper reference vel-
ocity to estimate convective effects in the core region.
In some papers, other authors use U, and obtain a
different parameter, namely Pr'*(4? Ma)*"”, which
overestimates the strength of convection in this case
of flows at low Prandtl numbers.
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5. LARGE MODIFIED MARANGONI NUMBERS
(REGIME Il)

The case where the Marangoni number is very large,
so that Pr¥*(42 Ma)"* » 1, is considered now. This
means that convection dominates the heat transfer
process over most of the enclosure, whereas it is neg-
ligible close to the free surface, as discussed in Section
4. There must exist, then, a thin region (near the free
surface) where both conduction and convection are
important, that is, a thermal boundary layer. The
thickness of this thermal boundary layer will be small
as compared to the depth of the enclosure, D, and, on
the other hand, since Pr « 1, large as compared to
the thickness of the flow boundary layer. Thus, three
different regions can be differentiated.

In this case, due to strong convective effects, the
driving force and the scaling of the flow field are
expected to change. The temperature difference, AT,
as given by equation (5), was the appropriate reference
value when conduction was important all over the
enclosure (this was the case considered in regimes I
and IT). Now that the heat transfer process is domi-
nated by convection, a new reference value has to be
determined. Let AT* be the reference temperature
difference sought, and J, the thickness of the thermal
boundary layer, over which conduction and con-
vection are important. From equation (3c) one has

AT = 2% (15)

K
where §, is as yet unknown and depends on the flow
field. The relation between the two reference tem-
perature differences is

5
AT* = AT
DA

(16)
where here AT represents the reference temperature
difference that one would obtain if in this case the
temperature distribution were determined by con-
duction. Both temperature distributions in the Y
direction are sketched in Fig. 2 for comparison. The
surface temperature is smaller than it would be if the
heat transfer process were dominated by conduction,
as given by equation (16). The slope at the free surface
is the same in both cases as given by the thermal
boundary condition (3c).

5.1. Flow boundary layer

An analysis similar to that made in Section 4 is
carried out here for the flow boundary layer. The
following reference quantities are used to non-dimen-
sionalize the problem: %, 6% UX V¥ P¥ and AT*,
where P¥= pU* and V¥= U*¥%. Here AT* is the
appropriate reference, as it follows from the ther-
mocapillary boundary condition (2d) ; from this equa-
tion one has

U*  AT*

Hsz=0r—g (17
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F1G. 2. Sketch of temperature distributions for the con-
duction and convection regimes.

and from the momentum equation in the X direction

(1b), after balancing inertia and shear stress
ur _ ur

o

(18)

In order to determine U¥ d*and é,, one more relation
is required which must come from the analysis of the
thermal boundary layer.

5.2. Thermal boundary layer
Now, §, is the characteristic length in the Y direc-
tion. As was mentioned before, since low-Prandtl-
number flows are being considered, the thermal
boundary layer is expected to be much thicker than
the velocity boundary layer, é, » 8% and thus, the
thermal boundary layer is part of the ‘core region’
for the flow boundary layer. The following reference
quantities are used to non-dimensionalize the prob-
lem: %, 6, U¥ V¥ PFfand AT*, where P¥*= pU®,
and V= U,/%¥. The reference velocity U*is given
by

L J— *5:(
Ul - US(S\l

after letting V= V¥ analogously to equation (11).
The condition that convection and conduction be
of the same order of magnitude over §,, which defines
the thermal boundary layer, reads
gebT* _ AT

= .
b 82

(19)

(20)

From equations (15) and (17)—(20), the expressions
for U¥ d}and 6, are determined. The new reference

quantities are
o\l
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0¥ pPrt?
I):(AZR(')]’J'« | (22)
d, 1 5
D= P My (23
The relationship between d*and o, is then
OF
= Pr«< 1. (24)

0,

The corresponding Reynolds number for the flow
boundary layer is defined as Re*= UX%/v. and one
has

(Al R()ﬂ)l 2

A® Re*= PRESEE l.

(25)
The dimensionless equations for the flow and thermal
boundary layers are given in the Appendix. From
equation (A4d), one has that the parameter that deter-
mines the relative importance of convection and con-
duction in the flow boundary layer (thc effective Peclet
number) i1s the Prandtl number. Since Pr « I, con-
vection is negligible inside the flow boundary layer ;
the temperature distribution will then be determined
by conduction only. This is the same result obtained
in regime I1. Also. from equations (ASb) and (AS5c).
one has that the viscous terms in the momentum
cquations in the thermal boundary layer are negligible.
The corresponding Reynolds number is defined as
Re¥= UX¥/v. and one has

A? Re¥= Pr'3(4° Re )" » 1. (26)

5.3. Thermal core region

This region is now the region outside the thermal
boundary layer. D is considered to be the charac-
teristic length in the Y direction. Since the temperature
difference across the thermal boundary layer is AT*,
the thermal core is essentially isothermal [7]. Thus,
only the flow cquations arc non-dimensionalized here.
The following reference quantities arc used: 2. D,
U#* V*and P* where P¥= pU* and V¥= UD/¥.
The reference velocity U/} is given by
vr= o (27)

: "D
after letting V¥ = V¥ analogously to equation (11).

The corresponding Reynolds number for the ther-
mal core flow is defined as Re¥ = U¥%¥/v. The dimen-
sionless equations are given in the Appendix (A6). It
follows that the parameter

(47 Re,)"?

pyiii > 1 (28)

A Re¥ =
indicates the relative importance of inertia and viscous
forces in this thermal core region; thus, the viscous
terms arc negligible.

D. Rivas and S. OSTRACH

F1G. 3. Sketch of velocity and temperature distributions for
the thermal boundary layer regime.

A sketch of the configuration in this regime (flow
and thermal boundary layer) is shown in Fig. 3.

Remark. Previous results (equation (21)) show that
the reference velocity in the surface layer in this
regime, /¥ is independent of .. From the thermo-
capillary boundary condition (2d) one has equation
(17), where the quotient AT*/¥ gives a measure of
the driving force. From equations (15) and (23) one
has. all other parameters being fixed

AT* 1
)(l} ~ Ly/’l 2:

that is, as ¥ decreases (or as the heat flux distribution
gets narrower), the driving force increases, and so
does the ratio U¥J* (equation (17)). However, U¥is
independent of % ; thus, the increase in driving force
results in a decrease in the reference layer thickness
(indeed. from equation (22), §*~ "), The practical
implication is that by narrowing the heat flux dis-
tribution, even though the driving force increascs,
once regime 111 is attained, the order of magnitude of
the fluid velocily remains unchanged and, hence, the
surface velocity is not expected to change much (recall
that now the intensity of the heat flux distribution,
Q.. is not changed).

6. RESULTS
Three different flow regimes have been obtained,
namely
1. Viscous regime
A Re, < 1.

a
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Table 1. Summary of scaling results ; flow characteristics

Pr«1

A*Re, < 1

A*Re, > 1

A* Ma « 1 A*Ma ~ 1

A*Ma» 1

PrA Ma) P <1 PrY (A Ma)P ~ | PrY3(47 Ma)" » 1

Viscous forces
important

Velocity boundary layer
inertia and viscous forces important

convection negligible

A% Re, « |
inertia negligible

inertia dominant

Thermal boundary
layer
inertia dominant

A’ Re, ~ 1 Core region
inertia important

Convection Convection

negligible negligible

convection and
conduction
important
Thermal core region
inertia dominant
isothermal

Convection and
conduction
important

I1. Flow boundary layer regime (no thermal boundary
layer)
A>Re,» 1 and Pr¥3(4>Ma)'’ < 1.
HI. Flow and thermal boundary layer regime
A’ Re,» 1 and Pr¥*(4® Ma)'* » 1.

These three flow regimes correspond to two thermal
regimes :

(i) conduction regime (flow regimes I and II) ;

(ii) convection regime (flow regime IIT).

The scaling results of these regimes are summarized
in Tables 1 and 2.

Now the behavior of the maximum velocity and
maximum temperature of the fluid is estimated by
using the scaling results. This is one of the goals of
this type of analysis. As the maximum velocity and
maximum temperature of the fluid occur on the free
surface, the reference velocity in the surface region and
the reference temperature difference (which applies
along the free surface) are considered as estimates for
Upnax and T, — T, respectively.

Since A’ Re, ~ Q,, all other parameters being
equal (see equations (5) and (6)), the dependence of
Unax and T, with the intensity of the heat flux dis-
tribution, Q,, will be given in dimensionless form by
the dependence with A? Re,. For the velocity field

Table 2. Summary of scaling results ; reference quantities

Pr«1
A*Re, < 1 A% Re, » 1
A*Ma« 1 A*Ma~ 1 A*Ma > 1
P’ Ma)'P <1 Pri3(4°Ma)'’ ~ 1 Prii(4* Ma)'? » 1
D
ar=2 ar= 2P ars = 22
K K K
U - arATA v - oEATHW\ yro (07Qo%\”
I3 ure : uK
d, 5* Priis
% _ (42 3 9s _
D (A” Re,) « 1 D —(A2 Re) ™ « 1
o o
U = s *_ I7*_S
o UsD U= U 5,
J; 1
D= F A Mg <!
6*
Uk = [J*=
< USD
8
—=Pr«l

o,
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F16. 4. Scaling laws for the surface velocity field.

one has the following expressions for the different
regimes :

Regime I {(equation (6))

log 4° U‘Tl— =log A’ Re, (29)
Regime II (equation (10))
fog A’é{ff = 1log A” Re, 30)
Regime 111 (equation (25))
log 42 U:::f = llog 4* Re,~ tlog Pr.  (31)

These laws are plotted in Fig. 4: curves -1 cor-
respond to equations (29)—(31) respectively. Inregime
11 the scaling law depends upon the Prandtl number:
the smalier Pr, the larger the values of A4 Re, for
which this thermal boundary layer regime is attained.
The symbols in the figure correspond to experimental
and computational results (see Table 3); in each case
the maximum velocity is represented.

For very small Reynolds numbers (limit 47 Re,, ~ 0)
the exact solution is known [15, 16], and the surface
velocity is

U(0) = LU
whereby one has

42 U_.(‘z}:‘{ _

log <~ =log A Re,—log 4. (32)

This equation, curve (a) in Fig. 4, is a line parallel to
curve I (equation (29)).

The information given by the scaling diagram is
two-fold. On the one hand, one has the slope of the
different curves: the data points must lie on lines
parallel to these curves (see curve (a)). On the other
hand, the scaling laws give the order of magnitude of
the variable represented : since the scale in the diagram
is logarithmic, one expects the data points to fall either
above or below but close to the appropriate curve.
Hence, one can imagine a band encompassing the
curves where the data points should lie, as can be seen
in Fig, 4. Thus, the estimated results, given by curves
I-111, agree quite well with the available experimental
and computational results. In particular, the solid
squares, which represent two numerical values cor-
responding to regime 111, validate the new reference
surface velocity, U obtained in this paper.

For the temperature field one has

Table 3. Data used to check the scaling laws in Figs. 4 and 5

Reference Liquid
B Oreperetal. [2] Pr=20.11
& Chan et al. [4] Pr=20.1
& Chaneral [4] Pr=0.02
[J Kouand Sun {6} Pr=10.01
@ Rivas and Ostrach [§] Pr=0
@] Tin

Camel er al. [9]

Heating mode Results

Gaussian heat flux Computation
Rectangular heat flux ~ Computation
Rectangular heat flux  Computation
Gaussian heat flux Computation
Gaussian heat flux Computation

Differential heating Experiment
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0.0t

Pr=0.1

Y

log AlReg

FiG. 5. Scaling laws for the surface temperature field.

Regime i (equation (6))

ATerD

log 42 =log A’ Re, (33)

Regime ii (equations (5), (6), (15) and (23))

*
log AZAT—:TZ—) = 3log A% Re,— 3log Pr. (34)
These laws are plotted in Fig. 5: curves (i) and (ii)
correspond to equations (33) and (34) respectively.
Thus, Figs. 4 and 5 show that U,,, and T,,, are
expected to increase as @, increases, although at a
smaller rate when convection effects become
important.

7. CONCLUSIONS

Scaling analysis has been applied to study steady
thermocapillary flows of low-Prandtl-number fluids
in shallow rectangular enclosures under an imposed-
heat-flux configuration. The different regimes that
appear in the thermo-fluid problem have been identi-
fied and the proper parameters and reference quan-
tities that define them obtained. The scaling has been
made for the entire range of parameters. The proper
parameters for determining the relative importance of
convection and conduction at low Prandtl numbers
have been determined. The existence of a thermal
boundary layer is restricted to the case of high modi-
fied Marangoni numbers, Pr¥3(4% Ma)"* » 1. In this
case, since convection dominates the heat transfer
process, the coupling between the flow and the tem-
perature field is very strong, and as a consequence,
the driving force changes and so do the reference
quantities. The scaling analysis of this case has been

made and the new reference quantities have been
obtained.

The conditions under which Ostrach’s scaling
applies in the case of flows at low Prandtl numbers
under an imposed-heat-flux configuration can now be
precisely stated. They are

A*Re,» 1 and Pr¥*(4> Ma)'® < 1;

one also has that under these conditions a thermal
boundary layer will not occur. On the other hand, if

A*Re, > 1 and Pr¥3(42 Ma)'* » 1

a thermal boundary layer will occur and the new
scaling obtained here applies.

The important role played by the core flow has
been shown : since convection is negligible in the flow
boundary layer, the core flow is responsible for the
coupling between the velocity and temperature fields.
In short, convective changes in driving force are
caused by the core flow. (In the case Pr = 1, con-
vection is important in the flow boundary layer, so
the coupling is then through the surface layer flow.)

The reference quantities that apply along the free
surface have been qualitatively identified with the
maximum velocity and maximum temperature of the
fluid, so that these maximum values can be estimated.
The agreement between the estimated results, given
by the scaling laws, and available experimental and
computational results is quite good. The new scaling
is thus validated.

In this scaling analysis, the implicit assumption that
the thermocapillary force is important has been con-
sidered, or in other words, that the flow is driven by
thermocapillary effects. Therefore, the extent of the
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region where the thermocapillary driving force is
important, .. defines the region of applicability of
the scaling results. Beyond this region the flow may
stifl be strong, driven by inertia ; however, the (thermo-
capillary) scaling results do not apply there.
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APPENDIX

Three different flow regimes have been obtained. The
equations of motion corresponding to each regime are given
here.

Regime 1
Viscous regime:
uL (Ala)

5 5
cx o Cy

D. Rivas and S. OsTRACH

s g Ju ¢ foan R
A° R(ﬁ.,(l( LT ) = — ;p +(A"—(; l,’ - ‘q‘ H) (Alb)
oy v éx o\ axT Oy
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Regime 11
Flow boundary layer regime. The equations for the bound-
ary layer region are

du Or
oL =0 (A2a)
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and for the core region they are
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Regime 11
Flow and thermal boundary layer regime. The equations
for the flow boundary layer region are

cu e
. =0 (Ada)
ox o Cy
Su lu op AT P u Su
S T T T (Adb
H ox Y Ox * (4% Re,)'? ox? 0 oyt ( )
& v (A7 Re)"dp
ax v AT Prit &
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R (Adc)
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for the thermal boundary layer they are
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o AP0 P0 e 1
“5”5“1&(/12 Ma)'? ox? =~ 0y? ax ' dy A dy
and for the thermal core region they are Prii4 v %
! £ Y +—2r—ﬁ Azflz"ﬁ-*‘z_‘ . (A6C)
du v (4° Re,)" ox* oy
L (A6a)
ox Oy Notice that the dimensionless variables for the various

regions and regimes are different, even though the same

) (A6b)  symbols are used.

Fra P

u ou_ dp Prid ,0%u %
ox U('iy ="nt (A% Re,)''*

ANALYSE D’ECHELLE DES ECOULEMENTS THERMOCAPILLAIRES A FAIBLE
NOMBRE DE PRANDTL

Résumé—On étudie les écoulements permanents thermocapillaires aux faibles nombres de Prandtl dans
des cavités étroites soumises a un flux de chaleur en ’absence de forces gravitationnelles. L’analyse d’échelle
est appliquée pour obtenir les paramétres et les grandeurs de référence qui définissent 1€ probléme. Les
différents écoulements et régimes thermiques sont identifiés. Les conditions sous lesquelles apparait une
couche limite thermique sont définies. On analyse le probléme de couche limite thermique ; dans ce cas, a
cause du fort couplage entre ’écoulement et les champs de température, la force motrice change et aussi
les quantités de référence. Les nouvelles lois d’échelle sont testées avec des résultats numériques. Les
nouvelles grandeurs de réference sont validées.

SKALIERUNG BEI THERMOKAPILLAREN STROMUNGEN MIT KLEINER PRANDTL-
ZAHL

Zusammenfassung—Die stationiire thermokapillare Strémung bei kleiner Prandtl-Zahl in flachen Hohlréu-
men wird fir aufgeprigte Wirmestromdichte in Schwerelosigkeit untersucht. Unter Anwendung der
Dimensionsanalyse ergeben sich geeignete Parameter und BezugsgroBen fiir die Beschreibung des Problems.
Die unterschiedlichen Bereiche von Stréomung und Warmetransport werden identifiziert. Es werden die
Bedingungen definiert, unter welchen eine thermische Grenzschicht auftritt. Das Problem der thermischen
Grenzschicht wird gelost. In diesem Fall dndern sich die antreibende Kraft und die BezugsgréBen wegen der
starken Kopplung zwischen den Geschwindigkeits- und Temperaturfeldern. Die neuen Skalierungsgesetze
werden mit Rechenergebnissen verglichen, die neuen BezugsgroBen werden validiert.

ONPEAEJEHUE MACIITABA TEPMOKAITUJITIAPHBIX TEMEHUN C HU3KUITHA
YUCITAMH NMPAHATIIA

Annotamms—HccnenyoTes cranMoHapHEIe TEPMOKAITHIISPHBIE TEYEHHUA C HU3KHMH YKcaMu [IpHanTs
B HETIyGOKMX MONOCTAX C 33JAHHBIM TEIUIOBBIM OTOKOM MPH OTCYTCTBHH IDABHTALMOHHBIX cri1. Jlis
pacueTa ONpeAC/IAIOLIMX MMAapaMeTPOB XaPaKTEPHBIX BEJIMYHH 3aJa4M HCHOJIL3YETCH aHANW3 Noaobus.
BoispasiioTes pasiuYHbe PEXHMbI TCYEHHA H TEILIOBbIE PeXHUMEL. OTPeeNsioTCs YCIOBHS BO3HHKHOBE-
HHs TEILIOBOrO MOrPaHAYHOIO C/10s. AHAIHIHPYETCH 3a/a4a O TEIUIOBOM IIOIPAHHYHOM CJIOE; B Pacc-
MaTPHBAEMOM CJIy4ae H3-3a CHJILHOH B3aUMOCHA3HM MEXIY MONAMH TEYCHHS U TEMIEPATyp ABHXKYIIasd
CHJld M XaPAKTEPHbIE BEJIMMHHLI M3MEHAIOTCA. [IPHMEHMMOCTL MOTyHEHHBIX 3aKOHOB 110400Ms mpoBep-
AICTCH MCXOAs M3 pe3yabTaToB pacyeroB. [loaTeepXknaeTcs NpPaBHIBHOCTE BLIGOpA XapaKTEpPHbIX
3HaYEHMH.



